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Abstract
We develop a general framework to analyze the controllability of multiplex
networks using multiple-relation networks and multiple-layer networks with
interlayer couplings as two classes of prototypical systems. In the former, net-
works associated with different physical variables share the same set of nodes
and in the latter, diffusion processes take place. We find that, for a multiple-
relation network, a layer exists that dominantly determines the controllability of
the whole network and, for a multiple-layer network, a small fraction of the
interconnections can enhance the controllability remarkably. Our theory is
generally applicable to other types of multiplex networks as well, leading to
significant insights into the control of complex network systems with diverse
structures and interacting patterns.

Keywords: Controllability, Mulitplex networks, Diffusion

1. Introduction

The past decade has witnessed a great deal of effort towards understanding the dynamics of
complex network systems [1]. Extensive research, however, has focused on single-layer networks
with one type of nodal interactions. In a variety of complex systems, multiplex networks are
becoming increasingly ubiquitous [2, 3]. For example, bus, subway and airlines constitute a
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typical multiplex public transportation network, making traveling more efficient compared with
the case of a single traffic mode. Communications through phones, emails, online chats and blogs
represent a typical multiple-relation network in a modern society, where networks with different
relations, each having its own physical function, share the same set of nodes. Multiplex networks
are also quite common in biochemical systems [4]. It has been demonstrated that multiplex
networks exhibit distinct dynamical properties from those in single-layer networks, examples of
which include cascading failures [5–8], diffusion [9], evolutionary-game dynamics [10, 11],
synchronization [12] and traffic dynamics [13]. How to control multiplex networks is a
fundamental problem, but it has not been addressed despite intense recent studies of the structural
controllability [14, 15] of directed complex networks [16–21].

In this paper, we present a general framework based on the maximum multiplicity theory
[22, 23] to address the exact controllability of multiplex networks comprising multiple relations
(e.g., multi-modal communication networks) and multiple interconnected layers (e.g., multi-
modal transportation networks). We focus on the controllability measure defined by the
minimum set of driver nodes that need to be controlled to steer the whole system toward any
desired state. Our framework is generally applicable to multiplex networks of arbitrary
structures and link weights. We study, in detail, duplex networks with two different relation
layers that share the same set of nodes and two-layer networks with interlayer couplings as
representative examples of two general classes of multiplex networks, as illustrated in figure 1.
In the two-relation network, each layer characterizes interactions among one of the two types of
physical variables, such as displacement (zeroth order) and velocity (first order), where the latter
is the derivative of the former. A finding is that the zeroth-order layer plays the dominant role in
the controllability in the sense that the layer exclusively determines the lower and upper bounds
of the controllability measure. In the interconnected two-layer network, there is no dominant
layer, but we find that the interlayer connections are important to facilitate the control of the
whole system. Our exact controllability theory and the resulting criteria for efficiently assessing
the minimal set of required controllers can be readily extended beyond duplex networks,
offering a general framework for many types of multiplex networks.

The representative class of multiplex networks we treat constitutes multiple interconnected
layers, where diffusion takes place in each layer. The diffusion dynamics of these types of

Figure 1. Examples of (a) a multiple-relation network and (b) a multiple-layer network
with interconnections, withM = 2 layers. In (a), two relation networks (solid and dashed
links) share the same set of nodes but characterize distinct relations associated with
different physical variables. In (b), the interactions at each layer are independent of each
other, and the interlayer connections (dashed links) are from each node in a layer to its
counterpart in the other layer.
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multiplex networks have been studied recently [9], but here we investigate these systems from the
perspective of control. We also introduce a general method to find a minimum set of driver nodes
to fully control an arbitrary network, based on the following theoretical tools: the PBH theory [22],
our maximum multiplicity theory [23] and elementary column transformation as well as column
canonical form. Insofar as the control matrix has been obtained, the input signal can be determined
via the standard method from canonical control theory [15]. That is to say, if we find all the driver
nodes, we can steer the network system to any collective state in the high-dimensional state space.

In section 2, we first introduce the notion of exact controllability by using the setting of
single-layer complex networks. We next present a comprehensive theoretical framework for the
exact controllability of multi-relation networks, focusing on the key quantity of the minimal
number of controllers required to achieve full control of the networked system. The cases of
sparse and dense connections will be treated in detail. Finally, we present an exact
controllability theory for multi-layer networks with diffusion dynamics. In section 3, we present
results from extensive numerical tests of our theory for a large variety of network structures. In
section 5, we present a brief conclusion. Certain mathematical details are treated in a number of
Appendices. In particular, in Appendix A we present a proof of the exact controllability for
single-layer networks. In Appendix B, we derive a theory of exact controllability for multi-
relation networks of arbitrary order. In Appendix C, we present detailed calculations of exact
controllability of multiple interconnected layers with diffusion dynamics. In Appendix D, we
provide details of our method for identifying the minimum set of driver nodes.

2. Theoretical methods

Our goal is to develop a general theoretical framework based on the maximum multiplicity
theory introduced in [23] to quantify the exact controllability of multiplex networks. Without
the loss of generality, we primarily use a duplex network system with two relations, as
illustrated in figure 1(a). The system is described by

c A c A B
x v
v x v u
˙ ,
˙ , (1)0 0 1 1

=
= + +

where the vectors x xx ( , , )N
T

1= ⋯ and v vv ( , , )N
T

1= ⋯ characterize the two types of states of
the same set of N nodes. The N × N matrices A0 and A1 characterize the unweighted coupling
network (transpose of adjacency matrix) associated with the zeroth-order and the first-order layer,
respectively, and c0 and c1 are the interaction strengths. equation (1) can represent a mechanical
system where x is the vector of displacements of all nodes, v ẋ= is the corresponding velocity
vector, and the input signal represents a kind of acceleration or force. Hence, A0 and A1 define
two different kinds of interactions or relationships among the same set of nodes, as shown in
figure 1(a). The two-relation dynamical system is also similar to a high-order consensus problem
with external inputs; see, for example, [24]. Although the two-relation dynamical system used
here is similar to that in [24], we focus on our ability to control the system, while [24] explored
consensus dynamics with apparent difference from our work. Our goal is to find a set of B so that
the number ND is minimized with respect to controllers or independent driver nodes required to
achieve full control of the system, which can be expressed as [15, 17]

{ }N Bmin rank( ) . (2)D =

3
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In the following, we first consider the exact-controllability theory for single-layer networks, and
then develop a general and detailed theory for duplex and multiplex networks.

2.1. Exact controllability theory for single-layer networks

We consider the following single-layer network system under control:

A Bx x u˙ , (3)= +
where the vector x xx ( , , )N

T
1= ⋯ characterizes the states of N nodes, A denotes the coupling

matrix, B is the control matrix and u u uu ( , , , )m
T

1 2= ⋯ is the input signal. According to the
Popov-Belevitch-Hautus (PBH) rank condition [22], system (3) is fully controllable in the sense
that it can be steered from any initial state to any final state in finite time, if and only if the rank
condition sI A B Nrank[ , ]N − = holds for any complex number s, where IN is the N×N identity
matrix. Note that in contrast to the development of a structural controllability framework
[14, 17] based on the Kalman rank condition [25], here we choose the PBH condition as the
base of the analysis, which, strikingly, enables us to establish an exact controllability
framework for arbitrary complex networks.

In general, we have proved that [23] for an arbitrary single-layer network as described by
A, the following relation holds:

{ }( )N max , (4)D
i

i
Aμ λ=

where λi
A i l( 1, 2, , )= ⋯ are the distinct eigenvalues of A, and ( )i

Aμ λ is the geometric
multiplicity defined as N I Arank( )i

A
Nλ− − . Equation (4) is applicable to any networks with

arbitrary structure and link weights. If A is diagonalizable, e.g., a symmetric matrix
characterizing an undirected network, the geometric multiplicity is equal to the algebraic
multiplicity or eigenvalue degeneracy ( )i

Aδ λ (the number of eigenvalues with identical value
λi
A), so we have

{ }( )N max . (5)D
i

i
Aδ λ=

For sparse and dense networks, the maximum multiplicity theory leads to an efficient criterion
to determine ND, which solely depends on the rank of the coupling matrix A. In particular, for
an arbitrary sparse network, we have N N Amax {1, rank( )}D

s = − and for a dense network
with unit link weights, we have N N I Amax {1, rank( )}D N

d = − + (See Appendix A).

2.2. Exact controllability theory for two-relation networks of second order

Consider now the two-relation network system (1). In order to find ND, we use the
transformation y x v( , )T T T= to write the system as

M B
I

c A c A B
y y u y u˙

0 0 , (6)
N

0 0 1 1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= + ′ = +

where 0 represents the zero matrix of proper dimension and M R N N2 2∈ × . It can be verified that
system (6) possesses the same controllability measure as system (1). Note that half of the
control matrix B′ has zero elements and, consequently, the structural-controllability theory
[14, 17] is not applicable. The PBH condition stipulates that system (6) is controllable if and
only if sI M B Nrank[ , ] 2N2 − ′ = is satisfied for any complex number s. After some elementary
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algebra, we obtain

[ ]sI M B N s I sc A c A Brank , rank , .N N2
2

1 1 0 0
⎡⎣ ⎤⎦− ′ = + − −

The necessary and sufficient controllable condition becomes then

s I sc A c A B Nrank , ,N
2

1 1 0 0
⎡⎣ ⎤⎦− − =

which is determined by both layers A0 and A1, so that ND is affected by the interplay between
them. We explore such interplay in terms of two categories: (I) A A0 1= (special case) and (II)
A A0 1≠ (general case).

2.2.1. Lower and upper bounds of ND. We find that the lower and upper bounds of ND are
determined exclusively by the properties of A0:

{ }( )( )N A Nrank max , (7)D
i

i
A

0
0μ λ− ⩽ ⩽

where max { ( )}i i
A0μ λ is the maximum geometric multiplicity determined by A0, suggesting that

the network property of the zeroth-order layer plays the key role in the controllability of the
whole system. The proof of (7) proceeds, as follows.

Applying the transformation y x v( , )T T T= , system (4) can be rewritten as

M By y u˙ (8)= + ′
with

M
I

c A c A
B

B

0
, 0 .

N

0 0 1 1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= ′ =

Here 0 represents some zero matrix with proper dimension. According to the PBH rank
condition, system (8) is controllable if and only if

[ ]sI M B Nrank , 2 (9)N2 − ′ =

for any s, which can be simplified as

[ ]

( )

( )

sI M B
sI I

c A sI c A B

sI I

s sI c A c A B

I

s sI c A c A B

N s I sc A c A B

rank , rank
0

rank
0

0

rank
0 0

0

rank , , (10)

N
N N

N

N N

N

N

N

N

2
0 0 1 1

1 1 0 0

1 1 0 0

2
1 1 0 0

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡⎣ ⎤⎦

− ′ =
−

− −

=
−

− −

=
−

− −

= + − −

indicating that system (8) is controllable if and only if

s I sc A c A B Nrank , . (11)N
2

1 1 0 0
⎡⎣ ⎤⎦− − =

Note that the minimum number of controllers or independent drivers is defined as
N Bmin {rank( )}D = . According to equation (11), we have
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( )B N s I sc A c Arank( ) rank . (12)N
2

1 1 0 0⩾ − − −

Thus, for any A0 and A1, we can obtain

{ } { }
{ }

( )
( )

N B N s I sc A c A

N s I sc A c A

min rank( ) max rank

min rank .

D N

N

2
1 1 0 0

2
1 1 0 0

= = − − −

= − − −

It is apparent that

{ }( ) ( ) ( )s I sc A c A c A Amin rank rank rank , (13)N
2

1 1 0 0 0 0 0− − ⩽ − =

which gives the lower bound of ND as

{ }( ) ( )N N s I sc A c A N Amin rank rank . (14)D N
2

1 1 0 0 0= − − − ⩾ −

Finally, we obtain the lower and the upper bounds as given by (7). It is noteworthy that the
bounds are determined solely by the zeroth-order network, and they hold for any A0 and A1,
either sparse or dense.

2.2.2. The case of A0 ¼ A1. For the special case A A0 1= , we can prove that system (8) has the
same controllability measure and drivers as the single-layer system

A Bx x u˙ (15)0= +
but with different control signal u. This result is rigorous and valid for any A0, c0, and c1 in the
absence of self-loops. The proof proceeds, as follows.

Under the condition A A1 0= , equation (11) can be rewritten as

s I sc c A B Nrank ( ) , . (16)N
2

1 0 0
⎡⎣ ⎤⎦− + =

• If s c c0 1= − , for any B, we have

s I sc c A B
c

c
I B Nrank ( ) , rank , .N N

2
1 0 0

0

1

2⎡⎣ ⎤⎦
⎡
⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥
⎥− + = =

• If s c c0 1≠ − , we have

s I sc c A B
s

sc c
I A B Nrank ( ) , rank , .N N

2
1 0 0

2

1 0
0

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥− + =

+
− =

Therefore, when B satisfies sI A B Nrank[ , ]N 0− = for any s, we can conclude:
sI M B Nrank[ , ] 2N2 − ′ = for all s, indicating that system (4) has the same controllability

and input matrix as system (15). Nevertheless, system (4) has a different input signal u from
that associated with system (15).

2.2.3. The case of A0 ≠ A1 . ASparse .0 When the network A0 is sparse, the network
corresponding toM is sparse as well, since M contains three sparse parts 0N , IN and c A0 0, where
0N represents a zero matrix of order N. So, ND associated with M, according to the exact

6
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controllability of single network [equation (A4)], becomes

{ }N N Mmax 1, 2 rank( ) ,D = −

where Mrank( ) can be calculated as

[ ] [ ] ( ) ( )
( )

M
I

c A c A

I

c A

I c A I c A

N A

rank( ) rank
0

rank
0

0

rank 0, rank , 0 rank rank

rank .

N N

N N

0 0 1 1 0 0

0 0 0 0

0

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= =

= + = +

= +

We thus have the following efficient criterion:

{ }( )N N Amax 1, rank , (17)D 0= −

regardless of the link density of A1. This suggests that, when A0 is sparse, the controllability of
system (4) is solely determined by A0.

As a special case, if A 00 = and A 01 ≠ , equation (11) becomes
s I sc A B Nrank[ , ]N

2
1 1− = , which can be satisfied for s = 0 if and only if B Nrank( ) = ,

indicating that for the system c A Bx x u¨ ˙0 1 1= + , the number of driver nodes required is
N ND = .

ADense .0 We next analyze the detailed dependence of ND on the interplay between A0

and A1. In general, ND for the two-layer network system (4) under control is given by

{ } { }( )N B N s I sc A c Amin rank( ) max rank . (18)D
s

N
2

1 1 0 0= = − − −

The key to calculating ND lies in identifying the eigenvalue s associated with the maximum
geometric multiplicity of matrix M. We treat the two cases where A1 is sparse and dense,
separately.

Sparse A1. According to equation (10), the characteristic polynomial of M is
p I c A c A( ) | |M N

2
1 1 0 0λ λ λ= − − , where | · | represents the determinate. This means that, if we

find λ that satisfies p ( ) 0M λ = , then λ is an eigenvalue of M. From the exact-controllability
formula, we already have that, for dense A0, the maximum geometric multiplicity occurs at the
eigenvalue 1λ = − . Thus, in the absence of A1 (A 01 = ), p ( )M λ becomes

p I c A c
c

I A c p
c

( ) ,M N
N

N
N

A
2

0 0 0

2

0
0 0

2

0
0

⎛
⎝⎜

⎞
⎠⎟λ λ λ λ= − = − =

where p ( )A0
λ is the characteristic polynomial of A0 containing the factor 1λ + resulting from

the eigenvalue of 1λ = − associated with the maximum geometric multiplicity. This leads to the
characteristic polynomial factor c 12

0λ + in p ( )M λ . The solution to the equation
c 1 02

0λ + = gives the eigenvalue

c , (19)0λ = ± −

which corresponds to the maximum geometric multiplicity of M. When A1 is present but is
sparse, we can check that A1 has little effect on such crucial eigenvalues of M. Hence, in the
case where A0 is dense and A1 is sparse, the controllability measure can be determined as
N N I c A c Arank( )D N

2
1 1 0 0λ λ= − − − with c0λ = ± − , yielding the following efficient

criterion:
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( )N N c I c c A c Arank . (20)D N0 1 0 1 0 0= − ± − +

Dense A1. We then turn to the case of dense A1, where the eigenvalue associated with the
maximum multiplicity of a single network is −1 as well. Substituting A A1 0= into the
characteristic polynomial p ( )M λ , we have

( )

( ) ( )

p I c A c A I c c A

c c
c c

I A c c p
c c

( )

.

M N N

N
N

N
A

2
1 0 0 0

2
1 0 0

1 0

2

1 0
0 1 0

2

1 0
0

⎛
⎝⎜

⎞
⎠⎟

λ λ λ λ λ

λ λ
λ

λ λ
λ

= − − = − +

= +
+

− = +
+

We see that c c 01 0λ + ≠ and, hence, the characteristic polynomial suggests the existence of a
factor c c( ) 12

1 0λ λ + + . Solving the equation c c( ) 1 02
1 0λ λ + + = gives the eigenvalue

associated with the maximum geometric multiplicity as

c c c4

2
. (21)

1 1
2

0λ =
− ± −

We see that, when A1 is dense, there is little difference from case of dense A0, validating the
approximation used in the derivation of the eigenvalue of M. Consequently, for dense A1,

c c c( 4 ) 21 1
2

0λ = − ± − becomes the eigenvalue of the maximum geometric multiplicity.
The controllability measure is thus given by the following efficient criterion:

N N
c c c

I c
c c c

A c Arank
4

2

4

2
. (22)D N

1 1
2

0

2

1
1 1

2
0

1 0 0

⎡

⎣
⎢
⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥
⎥
⎥

= −
− ± −

−
− ± −

−

The above treatment of the two-relation network can be extended to multi-relation networks of
arbitrary order. See Appendix D.

2.3. Exact controllability theory for multiple-layer networks with diffusion dynamics

We consider the general setting of multiple-layer networks in which two types of diffusion
dynamics occur with a in each layer and among M layers, respectively. There are in total M × N
nodes and the state x t( )i

K of each node is indexed by a layer K and a number i within each layer.
The equations describing the multiple-layer diffusion system are [9]

( )D a D c b ux x x x˙ , (23)i
K

K

j

N

ij
K

i
K

l

M

Kl ii
Kl

i
l

i
K

j

m

ij
K

j

1 1 1

∑ ∑ ∑= + − +
= = =

where DK is a diffusion constant within layer K, a aij
K

ji
K= represents the connections in the

layer, DKl stands for the interlayer diffusion constant, cii
Kl represents the interconnections

between K and l layers, and b uij
K

j denotes the control at layer K. Without loss of generality, we
consider the case of M = 2. Denoting the inter-diffusion constant D D12 21= by Dx, we can
rewrite equation (23) in the matrix form:

H B
D A D D

D D A D
Bx x u u˙ , (24)

x x

x x

1 1

2 2

⎡
⎣⎢

⎤
⎦⎥

Λ Λ
Λ Λ

= + =
−

− +

where A1 and A2 are the adjacency matrices of each layer, the diagonal matrix Λ represents the
interlayer couplings with c cii ii ii

12 21Λ = = , and x x x x x( , , , , , )N N
T

1
1 1

1
2 2= ⋯ ⋯ represents the

8
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states of N2 nodes. If interconnections exist between all pairs of corresponding nodes, we have
INΛ = , where IN is unit matrix of dimension N. Since H is symmetric, according to the exact

controllability theory [equation (5)], we have

{ }( )N max , (25)D
i

i
Hδ λ=

where ( )i
Hδ λ is the algebraic multiplicity of λi

H. Analogous to the two-relation network, we are
able to derive the lower and upper bounds of ND. In particular, we rewrite H as

H H H
D A

D A

D D

D D

0
0

. (26)
x x

x x
1 2

1 1

2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Λ Λ
Λ Λ

= + = +
−

−

The two bounds are given in terms of the eigenvalue properties of H0 (H0 with INΛ = equals to
H) and H1:

{ } { }( ) ( )Nmax max . (27)
i

i
H

D
i

i
H0 1δ λ δ λ⩽ ⩽

In contrast to the two-relation network, here the bounds are determined by both layers. To
reveal the impact of interconnections on ND, we consider two cases: (I) INΛ = (full
interconnections) and (II) INΛ ≠ (partial interconnections). We set D D2 1= to simplify the
formulation of ND.

For case (I), we consider two subcategories: (i) A1 and A2 are both sparse and (ii) they are
both dense. For (i), we can derive from the characteristic polynomial that there are two
eigenvalues: 01λ = and D2 x2λ = − corresponding to identical maximum algebraic multiplicity.
Inserting the eigenvalues into equation (4) leads to the efficient criterion:

( )N N H N D I H2 rank( ) 2 rank 2 . (28)D x N2= − = − +

For (ii), the two eigenvalues are D1 1λ = − and D D(1 2 )x2 1λ = − + , which are associated with
identical maximum algebraic multiplicity. We obtain the following efficient criterion:

( ) ( )N N D I H N D D I H2 rank 2 rank 1 2 . (29)D N x N1 2 1 2
⎡⎣ ⎤⎦= − + = − + +

For case (II) INΛ ≠ , we explore the effect of the fraction of interconnections on ND by simply
setting D1, D2 and Dx to be unity. In this case, the trace tr ( )Λ of Λ is less than or equal to N due
to partial interconnections. There are also two subcategories: (i) A1 and A2 are both sparse and
(ii) they are both dense. Our theoretical analysis indicates that for (i), zero becomes the key
eigenvalue, yielding the following efficient criterion:

N N H2 rank( ). (30)D = −
For (ii), the eigenvalue becomes −1, leading to

( )N N I H2 rank . (31)D N2= − +

Appendix C presents detailed derivations of equation (28)-(31).

3. Numerical results

Random, scale-free, and small-world double-relation networks. We numerically validate our
exact controllability theory using Erdö–Rényi (ER) random [26], Barabási–Albert (BA)
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scale-free [27] and Newman-Watts (NW) small-world networks [28]. Figure 2 shows the
controllability measure n N ND D≡ of the networks with two types of relations [figure 1(a)
and equation (1)] with respect to different cases in terms of the zeroth-order layer A0 and the
first-order layer A1. For A A0 1= [figure 2(a)] nD of the duplex network is exactly the same as
that of the single network A0, as predicted. For A A0 1≠ and A0 is sparse [figure 2(b)], nD(M)
of the duplex network is exactly equal to n A( )D 0 of layer A0, regardless of the average degree
of layer A1, in agreement with our prediction. If A A0 1≠ and A0 is dense [figures 2(c) and
2(d)], nD is a result of the interplay between the two layers. The lower and upper bounds are
explicit and determined solely by A0, as predicted by our theory. An interesting finding is that
nD can be either a non-monotonic [figures 2(a) and 2(c)] or a monotonic [figure 2(d)] function
of the link density of two layers, depending on the structural property of each layer. All the
results from the maximum multiplicity theory are in excellent agreement with our efficient
criteria.

Figure 3 shows nD of duplex networks with two interconnected layers A1 and A2

[figure 1(b) and equation (24)]. We find that there is no dominant layer in the sense that A1

and A2 play the same role in determining nD. Two cases are considered: (I) adjusting link
densities of both layers by fixing the fraction Ntr ( )Λ of interconnections [figures 3(a) and
3(b)] and (II) changing Ntr ( )Λ by fixing link densities [figures 3(c) and 3(d)]. We see that
for fixed values of Ntr ( )Λ , nD can be either a non-monotonic or a monotonic function of the
link density, depending on the structural property of each layer. Interestingly, as shown in
figures 3(c) and 3(d), the presence of a small fraction of interconnections can considerably
improve the systemʼs controllability compared with that for isolated layers, as demonstrated
by the rapid decrease of nD for small values of Ntr ( )Λ . The results from the maximum
multiplicity theory and the lower and upper bounds again are in exact agreement with those
from our efficient criteria.

Control implementation. To address this issue, we offer a general method to identify the
minimum set of driver nodes required to fully control multiplex networks. In particular, for the
network system (8), the control matrix B associated with a minimum set of drivers satisfies

I c A c A B Nrank ( ) ,N
max 2 max

1 1 0 0
⎡⎣ ⎤⎦λ λ− − = , where maxλ is the eigenvalue corresponding to

the maximum geometric multiplicity. We implement elementary column transformation on the
matrix I c A c A( ) N

max 2 max
1 1 0 0λ λ− − to obtain the column canonical form of the matrix that

reveals a set of linearly-dependent rows. The nodes corresponding to the linearly-dependent
rows are the drivers. For the two-layer network system (24), the condition becomes

[ ]I H B Nrank , 2N
max

2λ − = . Driver nodes can be identified as well via the column canonical
form of I HN

max
2λ − . For more details, see Appendix D.

Undirected networks. figure 4 shows the controllability nD of undirected two-relation
networks with different combinations of two layers. In particular, figures 4(a) and 4(b) show
nD of ER–BA and BA–ER duplex for the case where the zeroth-order layer A0 is sparse. We
see that nD(M) of the duplex is always equal to n A( )D 0 , regardless of the connection density
of the first-order layer A1, which is analogous to the observation in figure 2, further validating
our theoretical prediction. In contrast, if the zeroth-order layer A0 is dense, nD of the duplex
depends on both layers, as shown in figures 4(c) and 4(d) for ER-NW and NW-ER pairs.
Both the upper and lower bounds of exact controllability are successfully predicted
analytically, as well as the controllability in between, providing stronger support for the
validity of our theory.
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Figure 2. Controllability measure nD of two-relation networks. (a) nD as a function of
the connection probability p of ER–ER pair with A A0 1= . (b) nD(M) of the two-relation
system versus n A( )D 0 of the zeroth-order layer for different half average degree k 2A1〈 〉
of the first-order layer A1, where A0 is sparse in the BA–BA pair. (c) nD as a function of
the connecting probability p of A1 for ER–ER pair, where A0 is dense. (d) nD as a
function of random shortcut probability p in A1 for NW–NW pair, where A0 is dense.
Here, superscript MMT and EC denote the maximum multiplicity theory and the
efficient criteria, respectively. In (a), A0

MMT and M MMT are from equation (4), and A0
EC

denotes the results from the efficient criteria for sparse and dense connections. In (b),
nD(M) and n A( )D 0 are obtained from equation (4) and (17), and the dashed line is for
eye guidance. In (c) and (d), the solid and dashed lines represent the upper and lower
bounds of nD obtained from equation (7), where the quantity M MMT is from equation (4)
and M EC is from equation (20) and (22) for sparse and dense A1, respectively. P A( )0 in
(c) is the connecting probability of A0, and in (d) it is the random shortcut probability in
A0. Both A0 and A1 are undirected and unweighted networks. Data points are the
average of 50 independent realizations. In (b)–(d), N = 2000. We set c0 and c1 to be
unity and have checked that nD is insensitive to their values.
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Directed networks. figure 5 shows the controllability nD of directed two-relation duplex
for different combinations of ER random network and BA scale-free networks. The directions
of links are randomly set for the BA and for ER networks, bidirectional links are possible
among nodes, and each directed link is established according to the connecting probability p.
figure 5(a) and 5(b) show that nD(M) is always equal to n A( )D 0 if A0 is sparse, regardless of
the connection density of A1, analogous to the results of undirected networks. Figure 5(c)
shows that for the case of A A0 1= , regardless of whether A0 is sparse or dense, nD values of

Figure 3. Controllability measure nD of two-layer networks. (a) nD as a function of the
connecting probability p for fixed fraction Ntr ( )Λ of interconnections of ER–ER pair.
(b) nD as a function of half of the average degree k 2〈 〉 for fixed Ntr ( )Λ of BA–BA
pair. (c) and (d), nD as a function of the fraction Ntr ( )Λ of interconnections for fixed
connection densities p(A) in both layers. The solid and dashed lines represent the upper
and lower bounds of nD obtained from equation (27). Both layers have identical average
degrees. H MMT in (a)–(d) refers to the exact controllability from equation (5). For

Ntr ( ) 1.0Λ = , H EC denotes the results obtained from equation (28) and (29) for sparse
and dense connections of both layers, respectively. For Ntr ( ) 1.0Λ < , H EC denotes the
results from equation (30) and (31) for sparse and dense connections of both layers,
respectively. Both layers are undirected with size N = 2000, and 50 independent
realizations are used.

12

New J. Phys. 16 (2014) 103036 Z Yuan et al



Figure 4. Controllability measure nD(M) of the undirected, two-relation network versus
the controllability measure n A( )D 0 of the sparse zeroth-order layer A0 for (a) undirected
ER–BA pair, where k A1〈 〉is the average degree of the first-order undirected BA network
A1 and (b) undirected BA–ER pair, where p A( )1 is the randomly connecting probability
of A1. Here, the red dashed lines represent n M n A( ) ( )D D 0= . We see that
n M n A( ) ( )D D 0= always holds, regardless of the connection density of A1. (c) nD
versus the probability p of randomly adding shortcuts in the first-order layer A1 for ER–
NW pair, for dense zeroth-order layer A0, where P A( )0 is the random connecting
probability of A0. (d) nD versus the randomly connecting probability p of A1 for NW–

ER pair, for dense layer A0, where P A( )0 is the random shortcut probability of A0. In (a)
and (b), the values of nD(M) and n A( )D 0 are obtained by the maximum multiplicity
theories in equation (4) and equation (5), respectively. We have checked that n A( )D 0

from equation (5) is the same as those from the efficient criterion equation (A4). In (c)
and (d), the solid and dashed lines represent the upper and lower bounds of nD obtained
from equation (7). The quantity M MMT denotes the controllability measure of the duplex
from equation (4), and M EC denotes the controllability measure of the duplex calculated
from the efficient criteria equation (20) and equation (22) for sparse and dense A1 layers,
respectively. Each data point is the average over 50 independent realizations, and the
network size N is 2000.
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Figure 5. Controllability measure nD(M) of the directed, two-relation network versus the
controllability measure n A( )D 0 of the sparse zeroth-order layer A0 for (a) DER–DER pair,
where p A( )1 is the connecting probability of directed ER network A1 and (b) DER–DBA
pair, where k A1〈 〉 is the average degree of the first-order directed BA network A1. Here,
the red dashed lines represent n M n A( ) ( )D D 0= . We see that n M n A( ) ( )D D 0= always
holds, regardless of the connection density of A1. (c) nD versus the random connecting
probability p of DER–DER pair, when A A0 1= . (d) nD versus the random connecting
probability p of layer A1 for DER–DER pair, when layer A0 is dense, where P A( )0 is the
random connecting probability of A0. In (a) and (b), the quantities nD(M) and n A( )D 0 are
obtained by the maximum multiplicity theories, equation (4). We have checked that the
values of n A( )D 0 from equation (4) are the same as those from the efficient criterion
equation (A4). In (c), the quantity A0

MMT is the nD measure of the zeroth-order layer A0

obtained by the maximum multiplicity theory equation (4), M MMT is the nD value of the
duplex from the maximum multiplicity theory equation (4), and A0

ECdenotes the values of
nD from the efficient criteria of equation (A4) and equation (A5) for sparse and dense
connection, respectively. In (d), the solid and dashed lines represent the upper and lower
bounds of nD obtained from equation (7), M MMT is the controllability measure of the
duplex from equation (4) and M EC denotes the controllability measure calculated from
the efficient criteria equation (20) and equation (22) for sparse and dense A1 layers,
respectively. Each data point is the average over 50 independent realizations, and the
network sizes N in (a), (b) and (d) are 2000.
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the directed duplex networks exhibit quite similar qualitative behaviors to those for undirected
duplex networks. Figure 5(d) shows nD of the directed duplex if A0 is dense, where the value
of nD depends on both layers, similar to the undirected duplex. All the numerical results of nD,
as well as the lower and upper bounds are in excellent agreement with the analytical
prediction.

4. A real two-layer network of public traffic system

We apply our controllability criteria to a two-layer public traffic network consisting of a bus
network and a subway network in Beijing, China. The structure of the two-layer network is
shown in figure 6. In the bus layer, there are 2267 bus stations in total, and in the layer of
subway, there are 188 subway stations in total. For the bus network, if there is a direct bus line
between two bus stations (without any more stations between them), they are connected by an
undirected link. The links in the subway network represent the same meaning as those of the
bus network. Interlayer connections between the two layers stand for the existence of transfer
stations between bus and subway at a location. We find that there are 97 interlayer
connections.

Although the number of nodes in the subway layer is less than that in the bus layer, our
theoretical tools are still available to calculate nD. We first calculate the nD of each layer
individually by using the exact controllability theory for a single layer, yielding that nD of bus
layer is 0.0543 and that of subway layer is 0.0213. These results demonstrate that each layer is
of high controllability. We then use the exact controllability theory for two layer networks to
calculate the bus-subway network. nD of the two-layer network is 0.0424, indicating that the
controllability of the bus-subway network is in between that of each single layer. It is
noteworthy that the structural controllability theory is not applicable in the bus-subway
network, because the two-layer network is undirected.

Figure 6. A real bus-subway two-layer network in Beijing, China. For better
visualization, we set the subway network to be the upper layer and the bus network to
be the lower layer. In the subway layer, the colors represent different subway lines. In
the bus layer, there are a large number of different bus lines, so that we donʼt distinguish
them by different colors. Interlayer connections represented by vertical lines represent
the existence of transfer stations between bus and subway at a specific location. The
bus-subway network is a typical two-layer network, the controllability of which can be
calculated by our theoretical tools.
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5. Conclusion

To summarize, we have developed a general theoretical framework based on the maximum
multiplicity theory to assess the exact controllability of multiplex networks. The framework, as
an alternative to but going much beyond the recently introduced structural controllability
theory, is applicable to arbitrary single and multiplex networks, including weighted/
unweighted, directed/undirected and connected/disconnected networks/layers. Applying the
framework to two general classes of prototypical duplex networks, we find that for the two-
relation network, the zeroth-order layer plays the dominant role in controllability. However, in
the interconnected two-layer network, the controllability bounds are determined by the interplay
between two layers, and the presence of a small fraction of interconnections can considerably
improve the systemʼs controllability. We have also introduced a general method to identify the
minimum set of driver nodes to achieve full control of the multiplex network.

We wish to make two remarks. (1) The controllability measure of certain complex
networks can also be approximately calculated by a known method from statistical physics, the
cavity method [29–31]. (2) Our framework based on the maximum multiplicity theory is
sufficiently distinct from the recently introduced structural controllability theory for complex
networks [17], where it was proved that the structural controllability of any directed network as
characterized by the structural matrix is determined by the maximum matching of the network
topology. In contrast, our framework is applicable to any network, including directed,
undirected, weighted, unweighted, connected or disconnected networks with many components.
In this regard, our framework offers a more general theoretical tool to study multiplex networks
that are the subject of intense and extensive recent research in a wide range of fields.

Although we focus our study on the two representative classes of multiplex networks, our
framework is applicable to any multiplex network with arbitrary architecture, insofar as such a
network can be mathematically represented in a matrix form. Our theory thus offers an
approach, more general than any previous one, toward understanding and controlling complex
multiplex networks of significant physical interest.
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Appendix A: Proof of exact Controllability theory for arbitrary single-layer networks

Although the exact controllability theory has been proved in our previously published work
[23], here we offer a simpler proof of the theory. According to the PBH rank condition, system
(1) is controllable if and only if for each A( )iλ σ∈ , the relation I A B Nrank[ , ]i Nλ − = holds.
In terms of the rank inequality, we have

[ ] ( )N I A B I A Brank , rank rank( ), (A1)i N i Nλ λ= − ⩽ − +
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such that

( )B N I Arank( ) rank . (A2)i Nλ⩾ − −

Equation (A2) will be satisfied if Brank( ) is larger than or equal to the maximum value of
N I Arank( )i Nλ− − for all eigenvalues λi. Consequently, the minimum value of Brank( ) is the
maximum value of N I Arank( )i Nλ− − . That is, we can define the minimum number ND of
controllers or independent drivers, which is equal to Bmin {rank( )}, as

{ } { }( ) ( )N N I Amax rank max . (A3)D
i

i N
i

iλ μ λ= − − =

If A is diagonalizable, e.g., it is a symmetric matrix, then ( ) ( )i iδ λ μ λ= , yielding

{ }( )N max .D
i

iδ λ=

where ( )iδ λ is the algebraic multiplicity of λi. For a sparse network without self-loops, it can be
proved that [23]

{ }N N Amax 1, rank( ) . (A4)D = −

For a densely connected network, it can be proved that [23]

{ }( )N N I Amax 1, rank . (A5)D N= − +

Appendix B: Exact controllability theory for multiple-relation networks of arbitrary order

Our theory for two-relation networks can be generalized to multi-relation networks of arbitrary
orders, as described by

A A A B

x x
x x

x x x x u

˙
˙

˙ , (A6)n n n

1

2

0

1

1 0 0 1 1 1 1

=
=
⋮
= + + ⋯ + +− − −

where Ai i n( 0, 1, , 1)= ⋯ − denotes the coupling matrix corresponding to xi.
For the general system (A6), we prove that

• The lower bound and the upper bound always exist, determined by the zeroth-order
network A0: N A Nrank( ) D0− ⩽ , where i

A0λ i N( 1, 2, , )= ⋯ are the eigenvalues of A0.

• If A A An0 1 1= = ⋯ = − , then N max { ( )}D i i
A0μ λ= , which is exclusively determined by

the zeroth-order network A0.

• For general Ai i n( 0, 1, , 1)= ⋯ − , N N f smin {rank( ( ))}D s 0= − where s C∈ with
f x I x A x A x xA A( ) N

n
n

n
n

n
0 1

1
2

2
1 0= − − − ⋯ − −−

−
−

− .
If A0 is sparse, regardless of the structure of other layers, we have N N Arank( )D 0= − ,

the lower bound as determined by the rank of zeroth-order network A0.
If A 00 = , then N ND = , which means that, if the zeroth-order network does not exist, all

nodes need to be controlled to realize full control.
If A0 is dense with sparse Ai i n( 1, , 1)= ⋯ − , we have N N f srank[ ( )],D 0= − where s
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satisfies s 1 0n + = .
If all of Ai i n( 0, 1, , 1)= ⋯ − are dense, we have N N f srank( ( ))D 0= − where s

satisfies s s s 1 0n n 1+ + ⋯ + + =− .

Proof. Without changing the controllability, system (A6) can be transformed into

M By y u˙ (A7)= + ′
with y x x x( , , , )T T

n
T T

0 1 1= ⋯ − , B B(0, 0, , 0, )T T′ = ⋯ and

M

I

I

I

A A A A A

0 0 0 0

0 0 0 0

0 0 0 0
.

N

N

N

n n0 1 2 2 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⋯
⋯

⋮ ⋮ ⋮ ⋮ ⋮
⋯
⋯ − −

From the PBH rank condition, the system is fully controllable if and only if

[ ]sI M B

sI I

sI I

sI I

A A A A sI A B

nNrank , rank

0 0 0 0

0 0 0 0

0 0 0 0
(A8)nN

N N

N N

N N

n N n0 1 2 2 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

− ′ =

− ⋯
− ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ −

− − − ⋯ − −

=

− −

for any complex number s.

We can implement elementary transformation on sI M B[ , ]nN − ′ , as follows. First, from the
nth column to first column, we multiply s− by the ith column and add the result to the i( 1)− th
column so as to give the following matrix M1 that has the same rank as sI M B[ , ]nN − ′ :

M

I

I

I

f s f s f s f s f s B

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

( ) ( ) ( ) ( ) ( )

, (A9)

N

N

N

n n

1

0 1 2 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

− ⋯
− ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ −
⋯ −

where

( )

f s I s A s A s sA A

f s I s A s A s sA A

f s I s A s A s sA A

f s s sI A A

f s sI A

( ) ,

( ) ,

( ) ,

( ) ,

( ) . (A10)

N
n

n
n

n
n

N
n

n
n

n
n

N
n

n
n

n
n

n N n n

n N n

0 1
1

2
2

1 0

1
1

1
2

2
3

2 1

2
2

1
3

2
4

3 2

1 1 2

1

= − − − ⋯ − −

= − − − ⋯ − −

= − − − ⋯ − −
⋮
= − −
= −

−
−

−
−

−
−

−
−

−

−
−

−
−

−

− − −

−

Secondly, from the first row to n( 1)− th row, we multiply fi(s) by the ith row and add the result
to the nth row with f s sf s A( ) ( )i i i1= −+ , f s sI A( )n N n1 1= −− − , which yields the following
matrix M2 with the same rank as sI M B[ , ]nN − ′ :
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M

I

I

I

f s B

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

( ) 0 0 0 0

(A11)

N

N

N

2

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

− ⋯
− ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ −
⋯

According to the PBH rank condition, the general nth-order system is controllable if and only if

[ ] [ ]nN sI M B M n N f s Brank , rank ( 1) rank ( ), (A12)nN 2 0
⎡⎣ ⎤⎦= − ′ = = − +

for any s. This means

f s B Nrank ( ), (A13)0
⎡⎣ ⎤⎦ =

should be satisfied for any s. From the definition N Bmin {rank( )}D = , we can have

{ } { }( ) ( )N N f s N f smax rank ( ) min rank ( ) . (A14)D
s s

0 0= − = −

Apparently,

{ }( ) ( )f s Amin rank ( ) rank (A15)
s

0 0⩽

can be proven to be valid, analogous to the two-layer case. This thus gives the lower bound

( )N N Arank . (A16)D 0⩾ −

In the case of A Ai 0= i n( 1, 2 , 1)= ⋯ − , we have

( )f s B I s s s s A Brank ( ), rank 1 , .N
n n n

0
1 2

0
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= − + + ⋯ + +− −

• If s satisfies s s s 1 0n n1 2+ + ⋯ + + =− − , then s 0≠ and s 0n ≠ , so

[ ]f s B I s B Nrank ( ), rank , ;N
n

0
⎡⎣ ⎤⎦ = =

• For other s that satisfies s s s 1 0n n1 2+ + ⋯ + + ≠− − , we have

f s B
s

s s s
I A Brank ( ), rank

1
, .

n

n n N0 1 2 0
⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥=

+ + ⋯ + +
−

− −

This means that if B satisfies sI A B Nrank[ , ]N 0− = for all complex numbers s, then
sI M B nNrank[ , ]nN − ′ = for s C∈ , i.e., N max { ( )}D i i

A0μ λ= .

If A0 is sparse, M is sparse as well. In this case, s = 0 is the eigenvalue associated with the
maximum geometric multiplicity of M. Therefore, we have N N A(0) rank( )D 0μ= = − .

If A 00 = , we have Arank( ) 00 = , leading to N N A Nrank( )D 0= − = .
If A0 is dense and Ai i n( 1, , 1)= ⋯ − are sparse, we can get p p( ) ( )M A

n
0

λ λ= by setting
Ai=0 i n( 1, , 1)= ⋯ − . Due to the fact that −1 corresponds to the maximum multiplicity of
dense A0, the eigenvalue s of M associated with the maximum multiplicity satisfies s 1 0n + = ,
yielding N N f srank( ( ))D 0= − .

If all Aiʼs i n( 0, 1, , 1)= ⋯ − are dense, −1 becomes the eigenvalue corresponding to the
maximum multiplicity. By setting A Ai 0= i n( 1, , 1)= ⋯ − , we can derive
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( )p p( ) 1
1

.M
n n N

A

n

n n
1 2 1

1 20

⎛
⎝⎜

⎞
⎠⎟λ λ λ λ λ

λ λ λ
= + + ⋯ + +

+ + ⋯ + +
− − −

− −

Since −1 corresponds to the maximum multiplicity of dense A0, the eigenvalue s of M
associated with the maximum multiplicity satisfies

s

s s s 1
1 0,

n

n n1 2+ + ⋯ + +
+ =

− −

or equivalently s s s s 1 0n n n1 2+ + + ⋯ + + =− − , which gives N N f srank( ( ))D 0= − This
completes our proof. It is noteworthy that the matrices Ai i n( 0, 1, , 1)= ⋯ − are the
adjacency matrices of the respective networks.

Appendix C: Calculations of exact controllability of multiple interconnected layers

We provide detailed theoretical calculations for the controllability of a two-layer network
system with interlayer connections as described in the matrix form equation (23) for the two
cases: full interlayer and partial interlayer connections. We also treat the case of three
interconnected layers.

Full interlayer connections. We have INΛ = and thus

H H
D I D I

D I D I
.

x N x N

x N x N
2 0

⎡
⎣⎢

⎤
⎦⎥= =

−
−

To calculate the characteristic polynomial of H so as to identify the key eigenvalues, we set
A A2 1= and the calculation proceeds, as follows:

( ) ( )

( )
( )

( )

( ) ( )

( )

p I H

D I D A D I

D I D I D A

D I D A D I

D I D A D I D I D A D I

I D A D I D A

D p p

( )

2

.

H N

x N x N

x N x N

x N x N

x N x N x N x N

N x N

N
A D A

D

D

2

1 1

1 1

1 1
2 2

1 1 1 1

1 1 1 1

1
2 2 x

1 1 1 1

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦⎡⎣ ⎤⎦

λ λ

λ

λ

λ

λ λ

λ λ

= −

=
+ − −

− + −

= + − −

= + − − + − +

= − + −

= λ λ +

This result suggests that there is a one-to-one correspondence between the eigenvalues of matrix
A1 and that of matrix H. We can thus predict the eigenvalue of H associated with the maximum
multiplicity based on such correspondence. In particular, assuming that λ0 is the eigenvalue of
A1, i.e., the characteristic polynomial p ( )A1

λ has a factor 0λ λ− , the characteristic polynomial
of matrix H must contain factors D1 0λ λ− and D D( 2 )x 1 0λ λ+ − , leading to two eigenvalues
D1 0λ and D D( 2 )x1 0λ − with the same multiplicity as that of λ0 in A1.

When both A1 and A2 are sparse, the eigenvalue associated with the maximum multiplicity
is 00λ = , i.e., p ( )A1

λ has a factor λ associated with the maximum geometric multiplicity. Thus
p ( )H λ has factors Dλ and D D( 2 )x 1λ + , indicating that the eigenvalues associated with the
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maximum geometric multiplicity of H are 01λ = and D2 x2λ = − , resulting from D 01λ = and
D D( 2 ) 0x 1λ + = , respectively. Therefore, ND of the two-layer network when A1 and A2 are

both sparse is

N N H(0) 2 rank( ) (A17)D μ= = −

or

( ) ( )N D N D I H2 2 rank 2 . (A18)D x x N2μ= − = − +

When A1 and A2 are dense, the eigenvalue corresponding to the maximum geometric
multiplicity is 10λ = − and p ( )A1

λ has a factor 1λ + associated with the maximum geometric

multiplicity, accounting for the fact that p ( )H λ has factors 1
D1

+λ and 1
D

D

2 x

1
+λ +

. The
eigenvalues associated with the maximum geometric multiplicity of H become D1 1λ = − and

D D(1 2 )x2 1λ = − + , resulting from 1 0
D1

+ =λ and 1 0
D

D

2 x

1
+ =λ +

, respectively. ND of the
two-layer network when both A1 and A2 are dense is

( )( )N D N D I H2 rank , (A19)D N1 1 2μ= − = − +

or

( ) ( )( ) ( )N D D N D D I H1 2 2 rank 1 2 . (A20)D x x N1 1 2μ= − + = − + +

Partial-interlayer connections. We set D D D 1x2 1= = = and explore the impact of the
fraction of interlayer connections on the controllability of the two-layer network. In this case,

H
A

A

0
01

1

2

⎡
⎣⎢

⎤
⎦⎥= and H2

⎡
⎣⎢

⎤
⎦⎥

Λ Λ
Λ Λ= −

− . If there are a small fraction Ntr ( )Λ of interlayer

connections, H2 can be regarded as perturbations to H1 and the eigenvalue corresponding to the
maximum multiplicity is mainly determined by H1. Thus, when both A1 and A2 are sparse, the
eigenvalue of H as determined by H1 is 0 as well. We then have, for the two-layer network,

N N H(0) 2 rank( ), (A21)D μ= = −

Analogously, when both A1 and A2 are dense, the eigenvalue of H1 corresponding to the
maximum multiplicity is −1, leading to

( )N N I H( 1) 2 rank . (A22)D N2μ= − = − +

Exact controllability of networks of three interconnected layers. We can analytically
calculate the eigenvalues associated with the maximum multiplicity for a three-layer network
with full interlayer connections. The coupling matrix of the network becomes

H H H

A

A

A

I I I

I I I

I I I

0 0
0 0
0 0

2

2

2
, (A23)

N N N

N N N

N N N

1 2

1

2

3

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

= + = +
−

−
−

where H1 and H2 denote the intra- and inter-coupling matrices, respectively.
The eigenvalues can be solved from the characteristic polynomial of H by setting

A A A1 2 3= = , as follows:
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[ ]

[ ][ ]

[ ]

( )

p I H

I A I I

I I A I

I I I A

I I A I

I I I A

I A I I

I I A I

I A I A

I A I I A

I I A I

I A I A

I A I A I A

I A

I I A I

I I

I A I

I A

I I A I

I A

I A I

I A I A p p
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( 2)

( 2)

( 2)

( 2)

( 2)

2

( 2)

0 ( 3) ( 3)

0 ( 2) ( 3)

( 2)

0 ( 3) ( 3)

0 ( 3) ( 1) ( 3)

( 3)

( 2)

0

0 ( 1)

( 3)

( 2)

0 0

0 ( 1)

( 3) ( ) ( 3).

H N

N N N

N N N

N N N

N N N

N N N

N N N

N N N

N N

N N

N N N

N N

N N N

N

N N N

N N

N N

N

N N N

N

N N

N N A A

3

1

1

1

1

1

1

1

1 1

1
2

1

1

1 1

1 1 1

1
2

1

1

1
2

1

1

1

1
2

1
2

1 1

λ λ

λ
λ

λ

λ
λ

λ

λ
λ λ

λ λ

λ
λ λ

λ λ λ

λ
λ

λ

λ
λ

λ
λ

λ λ λ λ

= −

=
+ − − −

− + − −
− − + −

=
− + − −
− − + −

+ − − −

=

− + − −
− + + + −

+ − − − + +

=
− + − −

− + + + −
+ − + − − + +

= + −
− + − −

−
+ − −

= + −
− + − −

−
+ − −

= + − − = +

From this result, we can infer that if A1 has the eigenvalue λ0 with algebraic multiplicity ( )0δ λ ,
H must have the eigenvalue λ0 with algebraic multiplicity ( )0δ λ and the eigenvalue λ0–3 with
algebraic multiplicity 2 ( 3)0δ λ − . This means that, when A1 has the eigenvalue λ0 associated
with the maximum multiplicity, the eigenvalue of H corresponding to the maximum multiplicity
is λ0–3. So, when A1, A2 and A3 are sparse, i.e., 00λ = , the three-layer network has

( )N N I H( 3) 3 rank 3 . (A24)D N3μ= − = − +

If A1, A2 and A3 are dense, the eigenvalue 10λ = − corresponds to the maximum multiplicity,
leading to

( )N N I H( 4) 3 rank 4 . (A25)D N3μ= − = − +

Appendix D: Method for identifying minimum set of driver nodes

The method for identifying a minimum set of driver nodes presented in the main text is
generally applicable to any complex network systems that can be characterized in a matrix
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form, for which a rigorous mathematical proof based on the PBH theory [22] and elementary
matrix transformations has been provided in [23]. Consider an arbitrary network described by
matrix A. The minimum number of driver nodes ND is determined by the maximum geometric
multiplicity ( )maxμ λ occurring at the eigenvalue maxλ , which is ensured by the maximum
multiplicity theory (4). Hence, the control matrix B needed to achieve full control should satisfy
the PBH rank condition by substituting maxλ for the complex number s, as follows:

[ ]I A B Nrank , . (A26)N
maxλ − =

Our goal then becomes that of identifying the minimum set of driver nodes in B to ensure the
condition (A26). Note that I Arank[ ]N

maxλ − is exclusively determined by the number of
linearly-independent rows. If we are able to find all linearly-independent rows, the rest of the
rows in A that violate the full rank condition can then be identified. This can be realized by
implementing elementary column transformation on the matrix I AN

maxλ − , which yields the
column canonical form of matrix I AN

maxλ − , revealing the linear dependence among the rows.
The rows linearly-dependent on the others correspond to the driver nodes needed to achieve and
maintain full control. The number of the identified nodes is N I Arank( )N

maxλ− − , which is
nothing but the maximum geometric multiplicity ( )maxμ λ of the eigenvalue maxλ . Note that each
column in B can at most eliminate one linear correlation. Thus the minimum number of columns
of B, i.e., Bmin {rank( )} is the same as the number ( )maxμ λ of drivers. This means that the
minimum number ND of drivers as defined by N Bmin {rank( )}D = is exactly equal to the
maximum geometric multiplicity ( )maxμ λ , aresult of our maximum multiplicity theory obtained
by performing elementary transformation on the matrix I AN

maxλ − .
Note that there are no restrictions on the application of the method to complex networks,

insofar as such a network can be mathematically represented in a matrix form. For the two
classes of multiplex networks in the main text, this method allows us to find all driver nodes by
using the transformed matrices of the multiple-relation networks and the multiple-layer
networks, respectively.
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